

Final gas cleaning Targets

	Fluidized bed gasification (steam), post-filtration+reforming		Purity requirement (FT cat.)	
Impurities (ppm _v)	Woody- residues	Agro-residues	Leibold et al. (SASOL) ¹	Boerrigter et al. ²
H ₂ S	20 - 200	40 - 400	< 0.01	< 1
COS	2 - 20	1 - 40		
HCN	0.5 - 5	1 - 10	< 0.02	< 1
NH ₃	50 - 500	100 - 1000		
Halides	< 2	< 5	< 0.01	< 0.01
Alkalis	< 1	< 1	< 0.01	< 0.01
Tars	< 100	< 200	Below dew point	Below dew point

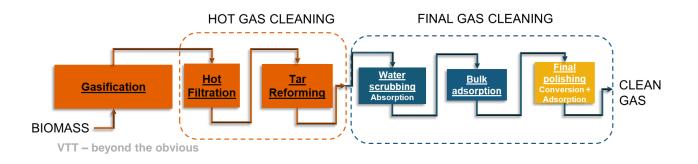
Catalytic synthesis: Strict gas purity requirements

1 Leibold et al.<u>https://doi.org/10.1016/j.powtec.2007.05.012</u> 2 H. Boerrigter et al. Green Diesel from Biomass via Fischer-Tropsch synthesis: New Insights in Gas Cleaning and Process Design, Pyrolysis Gasif. Biomass Waste, Expert Meet. (2002)

Final gas cleaning

Challenges:

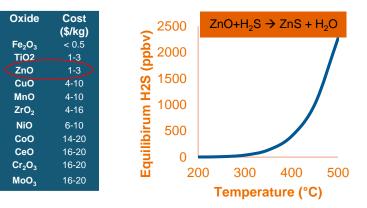
- Deep removal requirement
- Multicontaminant gas composition
- Varying concentrations due to biomass heterogeneity


Conventional gas cleaning solutions:

- Solvent scrubbing methods
- Rectisol/Selexol-type absorption processes don't "downscale" well
 - \rightarrow up to 20+ % of BtL plant total CapEx

Low-CapEx cleaning concept

- Contaminant removal by dry-bed adsorption and organic solvent-free scrubbing
- Over 20 % lower CapEx and OpEx to conventional wet-scrubbing solutions
- > Tailored for biomass-specific gas impurity matrix/levels
- ➤ Raw syngas relatively "clean" due to optimized hot gas cleaning → Simpler final gas cleaning technically/economically viable
- > Optional selective CO₂ removal by pressurized water scrubbing
 - > 50 80 % CO₂ removal rate



Adsorbent materials

Metal Oxides

 $MeO_x(s) + xH_2S(g) \rightarrow MeS_x(s) + xH_2O(g) \qquad \Delta H_r < 0$

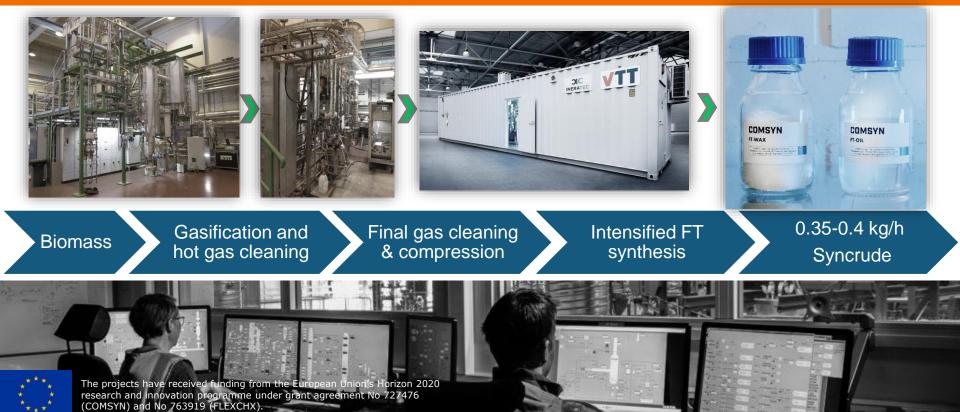
- ZnO capable of adsorbing inorganic compounds
 - Requires elevated temperatures, > 200 °C, to be effective


Activated carbons (AC)

- ACs can adsorb both organic and inorganic compounds
 - Active at low temperatures (< 100 °C)
 - Oxidative H₂S removal identified as particularly effective:

```
H_2S + \frac{1}{2}O_2 \rightarrow S(s) + H_2O \qquad \Delta H_r < 0
```


PDU-Scale Final gas cleaning



U

VTT – beyond the obvious

VALIDATION TEST RUNS FOR ENTIRE PROCESS; FROM GASIFICATION TO FT SYNTHESIS

Campaign results

- The final gas cleaning process achieved <u>full removal</u> of all analyzed syngas impurities in:
 - Woody-residue biomass
 - Agro-residue biomass
- Achieved syngas purity levels suitable for catalytic synthesis
- Demonstrated the feasibility of simplified final gas cleaning (when combined with optimized hot gas cleaning

	After hot gas	After final gas	
	cleaning	cleaning	
	Avg.	Max.	Avg
	(ppmv)	(ppmv)	(ppmv)
S-Species	90 - 340	0.3	<0.1/0
N-Species	270 - 720	0/b d	0/b.d
Halogens	n.a (1 - 5)	0/b.d	0/b.d
Metals	n.a	n.a	n.a
Benzene and tars (g/Nm ³) Oxygen (vol %)	0.2 - 0.4 0	0/b.d 0/b.d	0/b.d 0/b.d

VTT

n.a not analyzed b.d below detection limit

Conclusion

- Expensive wet-scrubbing gas cleaning technology replaced by adsorbent-based process
 - Tailored for biomass impurity profile
 - Economical at smaller scale
- Realization of process concept from idea to reality
 - Successful validation of gas cleaning process in full BtL configuration
 - Full removal of harmful species from real syngas

beyond the obvious

The projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727476 (COMSYN) and No 763919 (FLEXCHX).

Christian Frilund christian.frilund@vtt.fi www.vtt.fi